Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Intermolecular π-stacking and F...F interactions of fluorine-substituted meso-alkynylporphyrin

Yuta Marushima, ${ }^{\text {a }}$ Yuri Uchiumi, ${ }^{\text {a }}$ Kenichi Ogu ${ }^{\text {a }}$ and Akiko Hori ${ }^{\mathrm{a}, \mathrm{b} *}$
${ }^{\text {a School of Science, Kitasato University, Kitasato 1-15-1, Minami-ku, Sagamihara, }}$ Kanagawa 252-0373, Japan, and bPRESTO, JST, Honcho 4-1-8, Kawaguchi, Saitama, Japan
Correspondence e-mail: hori@kitasato-u.ac.jp

Received 11 May 2010
Accepted 4 July 2010
Online 8 July 2010
Two C2-symmetric meso-alkynylporphyrins, namely 5,15-bis-[(4-butyl-2,3,5,6-tetrafluorophenyl)ethynyl]-10,20-dipropylporphyrin, $\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{~F}_{8} \mathrm{~N}_{4}$, (I), and 5,15-bis[(4-butylphenyl)ethynyl]-10,20-dipropylporphyrin, $\mathrm{C}_{50} \mathrm{H}_{50} \mathrm{~N}_{4}$, (II), show remarkable $\pi-\pi$ stacking that forms columns of porphyrin centers. The tetrafluorophenylene moieties in (I) show intermolecular interactions with each other through the F atoms, forming one-dimensional ribbons. No significant $\pi-\pi$ interactions are observed in the plane of the phenylene and tetrafluorophenylene moieties in either (I) or (II). The molecules of both compounds lie about inversion centers.

Comment

Porphyrin assemblies allow chemists to create mechanical architectures and to understand biological systems (Drain et al., 2009; Beletskaya et al., 2009; Nakamura et al., 2007). For the past few decades, porphyrin derivatives with acetylene connections at the meso positions have found great utility as the motifs of self-assembling systems and electronic materials (Huang et al., 2006; Anderson et al., 1998). In particular, substitutions for the meso-alkynylporphyrins, while maintaining the coplanar molecule, are important in the development of intermolecular arrays in crystals and on surfaces (Kato et al., 2004). While many kinds of alkynyl, aryl and monohalogeno derivatives have been investigated, few examples of fluorine-substituted meso-alkynylporphyrins have been reported, such as those exhibiting mono-substitution by -F or $-\mathrm{CF}_{3}$ groups (Kuo et al., 2007; Doerksen \& Thakkar, 1999). We have been interested in the crystal packing of fully fluorinated aromatic compounds, because fluorine substitution controls the distance, direction and strength of the π-stacking based on the high electronegativity of the F atoms. The unique interactions induced by fluorine are demonstrated as areneperfluoroarene (Williams, 1993; Hori et al., 2007, and refer-
ences therein), $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ (Thalladi et al., 1998) and anion $\cdots \pi$ (Quiñonero et al., 2002) interactions, amongst others. This prompted us to design the perfluorophenylene-attached mesoalkynylporphyrin (I) and to compare it with the nonfluorinated analogue (II), which hopefully will provide a good basis for understanding the intermolecular interactions and for designing further reactions of self-assembling motifs. The butyl and propyl groups were attached in order to increase the solubility of the compounds.

(I) $X=\mathrm{F}$
(II) $X=\mathrm{H}$

The two porphyrin derivatives were synthesized in two steps using the Linsey reaction (see Experimental). Crystallization by diffusion of MeOH into a CHCl_{3} solution of the compounds yielded pure products. The UV-visible spectra of (I) and (II) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution are very similar: both Soret bands are observed at 442 nm for (I) and (II), and the Q bands are observed at 603 and 698 nm for (I) and at 601 and 698 nm for (II). However, the diffuse reflection spectra of the powder samples with KBr of (I) and (II) are slightly but significantly different from the spectra in a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. The peak tops of the broad bands are observed around 429-450, 626 and 716 nm for (I) and around 448, 618 and 710 nm for (II), which means that, except for the Soret band of (I), the bands are redshifted compared with a solution, as usual for the solid state. The small blue shift in the broad Soret band of (I) is attributed to the effects of intermolecular interactions.

Molecules of (I) and (II) lie across crystallographic inversion centers, with the porphyrin ring and the phenylene moieties almost coplanar (Fig. 1). However, the dihedral angle between them, viz. N1/N2/C1-C10 (12 porphyrin atoms) and $\mathrm{C} 13-\mathrm{C} 18$ (six phenylene atoms), in (I) is $10.72(7)^{\circ}$, which is greater than that in (II) $\left[2.29(8)^{\circ}\right]$. The acetylene linkers in (I) are slightly sigmoidal in a plane perpendicular to the plane of the porphyrin moiety. Accordingly, the entire framework without H atoms, F atoms and aliphatic groups of the molecules of (I) is less flat than that of (II): the r.m.s. deviation of the aromatic atoms from their mean planes is $0.1076 \AA$ in (I) and $0.0432 \AA$ in (II). In (II), the sigmoidal form is also observed in the plane of the porphyrin moiety (Fig. 1). Bifurcated intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link amino atom N 2 via H 1 to imino atoms N 1 and $\mathrm{N} 1{ }^{\mathrm{i}}$ (see Tables 1 and 2). The $\mathrm{C} 5-\mathrm{C} 11, \mathrm{C} 11-\mathrm{C} 12$ and $\mathrm{C} 12-\mathrm{C} 13$ distances around the acetylene linkage clearly indicate the localization of the triple bonds of the acetylene linkers in (I) and (II).

(a)
(a)

organic compounds

are dominant. The intermolecular distances between the two tetrafluorophenylene rings, $\mathrm{CgC} \cdots \mathrm{Cg} \mathrm{C}^{\mathrm{iv}}$ and $\mathrm{CgC} \cdots \mathrm{Cg} C^{\mathrm{v}}$ [symmetry code: (v) $-x+1,-y,-z$], are 4.7936 (8) and 5.1995 (13) \AA, respectively, where $C g C$ is the centroid of the tetrafluorophenylene ring $\mathrm{C} 13-\mathrm{C} 18$. The short $\mathrm{C}-\mathrm{F} \cdots \mathrm{Cg} \mathrm{C}$ distances involving $\mathrm{C} 14-\mathrm{F} 1 \cdots C g C^{\mathrm{vi}}$ [symmetry code: (vi) $x+1, y, z]$ and $\mathrm{C} 17-\mathrm{F} 3 \cdots C g C^{\mathrm{iv}}$ are 3.3590 (13) and 3.3599 (13) Å, respectively. Finally, the columns are arranged in a zigzag fashion along the b axis and the dihedral angle between the two planes of porphyrins is $87.85(14)^{\circ}$, with alternation of the aligned butyl and propyl chains.

In (II), the molecules also show $\pi-\pi$ stacking to produce columns of molecules along the b axis. The corresponding intermolecular atom \cdots atom distance of the molecules through the $\pi-\pi$ stacking is 5.2845 (5) \AA, the length of the b axis and greater than that in (I). The closest intermolecular distance between the two pyrrole rings in the porphyrin center, $C g A \cdots C g B^{\text {vii }}$ [symmetry code: (vii) $x, y+1, z$], is 3.5863 (10) \AA and the perpendicular distance from the ring centroids to the adjacent planes is 3.3016 (7) \AA. The lateral interaction along [102] between the columns is much weaker than that in (I). The phenylene ring is close to a butyl group and the acetylene linker of the other molecules, the short distances $\mathrm{H} 15 \cdots \mathrm{H} 20 A^{\text {viii }}$ [symmetry code: (viii) $x, y-1, z$] and $\mathrm{C} 12 \cdots \mathrm{H} 17^{\mathrm{ix}}$ [symmetry code: (ix) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$] being 2.31 and $2.83 \AA$, respectively. No remarkable $\pi-\pi$ intermolecular interactions are observed for the phenylene moiety and the closest intermolecular distance between the two phenylene rings, $C g C \cdots C g C^{\text {ix }}$, is 4.9821 (10) \AA. Along the c axis, the columns are arranged in a zigzag fashion and the inclination of the two planes of the porphyrins is $78.2(13)^{\circ}$.

In conclusion, both $C 2$-symmetric porphyrins show intermolecular $\pi-\pi$ stacking between the porphyrin centers, and no unusual stackings were observed between the phenylene moieties in (I) and (II). On the other hand, the tetrafluorophenylene moieties in (I) interact with each other through F...F interactions to give planar porphyrin ribbons. Accordingly, the $\pi-\pi$ overlap is more significant in (I) than in (II), which probably increases the H -aggregate character of porphyrin (I) to produce small blue shifts in the solid state.

Experimental

The porphyrins (I) and (II) were prepared in two steps using the general Linsey method (Anderson et al., 1998). Typically, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ $(0.40 \mathrm{mmol})$ was added to a solution of 4-butyl-2,3,5,6-tetrafluorophenylpropiolaldehyde (1.35 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{ml})$ and an excess amount of pyrrole $(68 \mathrm{mmol})$ at 248 K . The reaction mixture was stirred for 30 min , the solution was washed with 10% aqueous NaOH and water, dried over MgSO_{4}, and purified by column chromatography to give meso-(4-butyl-2,3,5,6-tetrafluorophenylethynyl)dipyrromethane in 86% yield. The product (1.17 mmol) was further reacted with n-butylaldehyde (1.17 mmol), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.40 \mathrm{mmol})$ and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (1.17 mmol) under Linsey conditions to produce porphyrin (I) as a dark-blue powder in 6% yield. Porphyrin (I) was also obtained in the same yield from 4-butyl-2,3,5,6-tetrafluorophenylpropiolaldehyde and mesopropyldipyrromethane, which was prepared from n-butylaldehyde
and an excess amount of pyrrole, under the same conditions as the first method. Porphyrin (II) was prepared from 4-butylphenylpropiolaldehyde and meso-propyldipyrromethane as a dark-blue powder in 1% yield.

For (I), UV-visible spectra in solution $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 442(\varepsilon=$ $\left.410000 M^{-1} \mathrm{~cm}^{-1}\right), 603\left(\varepsilon=54400 M^{-1} \mathrm{~cm}^{-1}\right), 698 \mathrm{~nm} \quad(\varepsilon=$ $37000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$); solid (KBr): 429-450, 626 and 716 nm . Elemental analysis calculated for $\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{~F}_{8} \mathrm{~N}_{4}$ (\%): C 70.58, H 4.98, N 6.58; found: C 70.23, H 4.98, N 6.53 . For (II), UV-visible spectra in solution $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 442\left(\varepsilon=413000 M^{-1} \mathrm{~cm}^{-1}\right), 601\left(\varepsilon=60000 M^{-1} \mathrm{~cm}^{-1}\right)$, $698 \mathrm{~nm}\left(\varepsilon=48300 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$; solid (KBr): 448, 618 and 710 nm . Elemental analysis calculated for $\mathrm{C}_{50} \mathrm{H}_{50} \mathrm{~N}_{4}$ (\%): C 84.95, H 7.13, N 7.92; found: C 84.91, H 7.01, N 7.95 .

Compound (I)

Crystal data

$\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{~F}_{8} \mathrm{~N}_{4}$
$M_{r}=850.88$
Monoclinic, $P 2_{\mathrm{a}} / n$
$a=4.7936$ (8) \AA
$b=23.483$ (4) \AA
$c=17.628$ (3) \AA
$\beta=91.824$ (2) ${ }^{\circ}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.970, T_{\text {max }}=0.993$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.108$
$S=1.01$
4444 reflections
286 parameters

Compound (II)

Crystal data

$\mathrm{C}_{50} \mathrm{H}_{50} \mathrm{~N}_{4}$
$M_{r}=706.94$
Monoclinic, $C 2 / c$
$a=33.613$ (3) A
$b=5.2845$ (5) \AA
$c=23.152(2) \AA$
$\beta=111.252$ (1) ${ }^{\circ}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.980, T_{\text {max }}=0.996$

Refinement

```
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044\)
\(w R\left(F^{2}\right)=0.110\)
\(S=1.03\)
4292 reflections
250 parameters
```

$V=1983.4$ (6) \AA^{3}
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.28 \times 0.08 \times 0.06 \mathrm{~mm}$

10839 measured reflections 4444 independent reflections 3019 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.038$

> H atoms treated by a mixture of independent and constrained refinement
> $\Delta \rho_{\max }=0.30$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}$
$V=3832.7$ (6) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.28 \times 0.14 \times 0.06 \mathrm{~mm}$

10125 measured reflections
4292 independent reflections 3128 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 \cdots \mathrm{~N} 1$	$0.85(3)$	$2.47(3)$	$2.980(2)$	$119(2)$
$\mathrm{N} 2-\mathrm{H} 1 \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.85(3)$	$2.28(3)$	$2.840(2)$	$124(3)$

Symmetry code: (i) $-x+2,-y,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H1 $\cdots \mathrm{N} 1^{\mathrm{i}}$	$0.906(18)$	$2.290(18)$	$2.8586(16)$	$120.5(15)$
$\mathrm{N} 2-\mathrm{H} 1 \cdots \mathrm{~N} 1$	$0.906(18)$	$2.425(19)$	$2.9779(17)$	$119.5(14)$

Symmetry code: (i) $-x,-y+1,-z$.

H atoms attached to C atoms were placed in geometrically idealized positions and refined riding on their carrier atoms, with aromatic, methyl and methylene $\mathrm{C}-\mathrm{H}$ distances of $0.95,0.98$ and $0.99 \AA$, respectively, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for the other H atoms. Atom H 1 (attached to N2) was located in a difference Fourier density map and refined freely to give $\mathrm{N}-\mathrm{H}$ distances of 0.85 (3) and 0.906 (18) \AA in (I) and (II), respectively.

For both compounds, data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported in part by a Kitasato University Research Grant for Young Researchers.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM3094). Services for accessing these data are described at the back of the journal.

References

Anderson, H. L., Wylie, A. P. \& Prout, K. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1607-1611.
Beletskaya, I., Tyurin, V. S., Tsivadze, A. Y., Guilard, R. \& Stern, C. (2009). Chem. Rev. 109, 1659-1713.
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Doerksen, R. J. \& Thakkar, A. J. (1999). J. Phys. Chem. A, 103, 1000910014.

Drain, C. M., Varotto, A. \& Radivojevic, I. (2009). Chem. Rev. 109, 16301658.

Hori, A., Shinohe, A., Yamasaki, M., Nishibori, E., Aoygi, S. \& Sakata, M. (2007). Angew. Chem. Int. Ed. 46, 7617-7620.

Huang, T.-H., Chen, Y.-J., Lo, S.-S., Yen, W.-N., Mai, C.-L., Kuo, M.-C. \& Yeh, C.-Y. (2006). Dalton Trans. pp. 2207-2213.

Kato, A., Sugiura, K., Miyasaka, H., Tanaka, H., Kawai, T., Sugimoto, M. \& Yamashita, M. (2004). Chem. Lett. 33, 578-579.
Kuo, M.-C., Li, L.-A., Yen, W.-N., Lo, S.-S., Lee, C.-W. \& Yeh, C.-Y. (2007). Dalton Trans. pp. 1433-1439.
Nakamura, Y., Aratani, N. \& Osuka, A. (2007). Chem. Soc. Rev. 36, 831845.

Quiñonero, D., Garay, C., Rotger, C., Frontera, A., Ballester, P., Costa, A. \& Deyà, P. M. (2002). Angew. Chem. Int. Ed. 41, 3389-3392.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Thalladi, V. R., Weiss, H.-C., Blaeser, D., Boese, R., Nangia, A. \& Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702-8710.

Williams, J. H. (1993). Acc. Chem. Res. 26, 593-598.

